

Module Title:		Advanced Automotive Chase and Control		sis	Leve	el:	7	Cre Val		20)
Module code:		ENG755	Is this a new Yes module?		Code of module being replaced:			N/A			
Cost Centre:		GAPC	JACS3 code:		H330						
Trimester(s) in which to be T2			With effect from: Septe			ember 17					
	School: Applied Science, Computing and Engineering			Module Leader: O.Durieux							
Scheduled learning and teaching hours				52 hrs							
Guided independent study				148 hrs							
Placement	Placement				0 hrs						
Module dura	tio	n (total hours)									200 hrs
Programme(s) in which to be offered MSc Automotive Engineering									Core √	Э	Option
Pre-requisites None											
Office use only											

Initial approval February 17 APSC approval of modification N/A Have any derogations received Academic Board approval?

Version 1 Yes ✓ No □

Module Aims

This module is designed to provide students with a detailed understanding and knowledge in automotive chassis engineering, the factors that influence stability, comfort and efficiency of vehicles.

Intended Learning Outcomes						
At	the end of this module, students will be able to	Key Skills				
		KS1	KS2			
1	Analyse the suspension dynamics performance of any conventional wheeled vehicle in low and high speed use.	KS3	KS4			
		KS6				
2	Analyze the handling performance of any conventional	KS1	KS2			
	Analyse the handling performance of any conventional wheeled vehicle in low and high speed steady state	KS3	KS4			
	conditions.	KS6				
3		KS1	KS2			
	Predict and improve the aerodynamic of a ground vehicle in normal use.	KS3	KS4			
		KS6				
Transferable/key skills and other attributes						
Application of science in technology, design for efficiency.						

Derogations

A derogation from regulations has been approved for this programme:

Students are required to achieve a minimum overall module mark of 50%, with each element of assessment (where there is more than one assessment) requiring a minimum mark of 40%.

Assessment:

All intended learning outcomes will be assessed by means of one 3 hour exam.

Analytical and descriptive questions will typically be proposed, the student will not have the choice in the questions to be answered.

Assessment number	Learning Outcomes to be met	Type of assessment	Weighting (%)	Duration (if exam)	Word count (or equivalent if appropriate)	
1	1, 2, 3	Examination	100%	3 hrs		

Learning and Teaching Strategies:

The module will be delivered through lectures, tutorials and student-driven investigative work assisted by the use of computer based design and simulation software such as ANSYS and MATLAB. Relevant video material and practical demonstrations will be used to strengthen topics from within the module.

Syllabus outline:

Chassis: Dynamics of the chassis, Road interactions. Steering: Low and high speed turning theory, effects of tractive forces. Steering geometry errors. Suspension: Vibrational Analysis of quarter (and half car model (one and two DOF). Active suspension analysis. Brakes: Brakes: Braking dynamics, Brake disk analysis, Vehicle Aerodynamics: Factors influencing Aerodynamics of open and closed vehicles.

Bibliography:

Essential reading

Adams H. (1992); Chassis Engineering HP1055; HPBooks.

Hammill D. (2006); Suspension and Brakes High-Performance Manual; Veloce

Gillespie T. (1992); Fundamentals of Vehicle Dynamics; SAE International.

Indicative reading

Katz J. (2006); Race Car Aerodynamics; Bentley Publishers.

Segers J (2014); Analysis Techniques for Race Car Data Acquisition (2nd edition); SAE International.

Haney P.W. (2003); *The Racing and High-Performance Tire: Using the Tires to Tune for Grip and Balance; SAE International.*